Найти на сайте

Найти в интернете

Главная Свойства тканей, трикотажа и нетканных материалов Физические свойства тканей
Способность одежды проводить тепло

При подборе тканей, трикотажа или нетканых материалов для тех или иных видов одежды и в процессах их влажно-тепловой обработки имеют особое значение теплозащитные свойства (теплоемкость, температуропроводность и теплостойкость), которые характеризуют отношение этих материалов к действию на них тепловой энергии.

Через материалы для одежды тепло передается главным образом теплопроводностью. Теплопроводностью называется способность любого вещества проводить тепло:

Степень теплопроводности материала численно характеризуется коэффициентом теплопроводности %:

Коэффициент теплопроводности показывает количество тепла, которое проходит за 1 ч через 1 м2 однородного слоя толщиной в 1 м при разности температур на ее поверхностях в 1°С.

О теплозащитных свойствах материалов при их фактической толщине судят по коэффициенту теплопередачи К, определяемого по формуле :

Материалы для одежды не являются однородными слоями, а представляют собой систему из большого количества волокон, отделенных друг от друга порами различной формы и размеров, заполненных воздухом.

Рис. 11-63. Зависимость теплопроводности от числа слоев в одежде

Рис. 11-63. Зависимость теплопроводности от числа слоев в одежде

Передача тепла в таких материалах слагается из передачи тепла теплопроводностью через порообразующий волокнистый слой, теплопроводностью и конвекцией через поры и излучением между стенками пор. Количество тепловой энергии, передающейся любым из этих способов, приблизительно пропорционально разности температур (t1—t2) двух прилегающих изотермических поверхностей.Для материалов одежды, величина коэффициента теплопроводности К изменяется приблизительно в пределах 0,033—0,070 ккал/м ч град, а для воздуха составляет 0,020 ккал/м - ч-град. Величина коэффициента теплопроводности для одного и того же материала не является постоянной, а. может изменяться в зависимости от объемного веса материала, влажности, температуры, воздухопроницаемости и направления теплового потока.

Из графика видно, что с увеличением количества слоев одежды теплопроводность снижается и повышаются ее теплозащитные свойства.

Чем больше тепловое сопротивление материала, тем выше его теплоизоляционные свойства. Тепловое сопротивление сложного слоя равно сумме сопротивлений каждого из составляющих слоев, т. е.

Ткани, трикотаж и нетканые материалы представляют собой дисперсную систему, в которой волокна относительно равномерно распределены в дисперсной среде (воздухе). Основной особенностью структуры этих материалов является высокая пористость и сравнительно малая величина контактных площадей между отдельными волокнами в материале. Поэтому теплопередача в материалах одежды осуществляется в значительной степени через слой сравнительно неподвижного воздуха, заключенного в материале.

Таблица 11-15. Коэффициент теплопроводности различных материалов при различном объемном весе.

Материалы

Объемный вес В кг/см3

Коэффициент теплопроводности в ккал/м-ч-град

Сукно

0,25

0,045

Шерстяной войлок

0,15

0,050

Хлопчатобумажный войлок

0,30

0,050

Вата хлопчатобумажная

0,05

0,046

Пух гагачий

0,02

0,056

Тепловое сопротивление текстильных материалов представляет собой некоторую среднюю величину от теплового сопротивления волокна и воздуха, находящегося в порах. В табл. 11-15 представлены данные о коэффициенте теплопроводности различных материалов при разном объемном весе

Как видно из таблицы, различные материалы при резко отличающемся объемном весе имеют близкий по значению коэффициент теплопроводности. Однако объемный вес материалов для одежды не оказывает существенного влияния на их тепловое сопротивление только в определенном интервале значений. При дальнейшем увеличении объемного веса и уменьшении пористости тепловое сопротивление уменьшается, а теплопроводность увеличивается. Так, при увеличении объемного веса ткани (бобрика) в 2,5 раза ее тепловое сопротивление снизилось более чем на 45%.

Рис. 11-64. Зависимость теплового сопротивления тканей от их толщины (в условиях спокойного     воздуха)

Рис. 11-64. Зависимость теплового сопротивления тканей от их толщины (в условиях спокойного воздуха)

Рис. 11-65. Влияние избыточной влажности пакета одежды на его тепловое сопротивление

Рис. 11-65. Влияние избыточной влажности пакета одежды на его тепловое сопротивление

Исходя из этого, сделаны выводы: 1) ткани с меньшим объемным весом являются более теплозащитными; 2) структура ткани при заданной толщине в условиях неподвижного воздуха непосредственно не влияет на тепловое сопротивление. Зато структура ткани оказывает существенное влияние на ее толщину и воздухопроницаемость, которые тоже непосредственно влияют на тепловое сопротивление материалов для одежды. Толщина ткани является одним из главных факторов, влияющих на тепловое сопротивление одежды независимо от ее волокнистого состава и плотности (рис. 11-64). С увеличением толщины материалов одежды пропорционально возрастает и их тепловое сопротивление. С повышением влажности материалов для одежды резко падает их тепловое сопротивление. На рис. 11-65 представлена зависимость теплового сопротивления материалов одежды от их влажности.

Резкое падение теплового сопротивления материалов одежды от их влажности объясняется тем, что коэффициент теплопроводности воды, проникающей в поры материала, равен 0,5 ккал/м-ч-град (в 20 раз больше, чем воздуха в порах среднего размера). Кроме того, наличие воды в порах материала увеличивает размеры контактных площадок между волокнами материала, что также оказывает влияние на снижение теплового сопротивления.

Рядом исследователей установлено, что увеличение коэффициента теплопроводности прямо пропорционально увеличению влажности. Степень влияния влажности текстильных материаллов на их теплопроводность неодинакова для различных тканей и зависит от рода волокон и объемного веса тканей. Так, теплопроводность тканей хлопчатобумажных более резко увеличивается с увеличением влажности, чем шерстяных тканей. Зависимость коэффициента теплопроводности тканей от их влажности может быть выражена следующей формулой:

где λвл — коэффициент теплопроводности влажной ткани; λСух — коэффициент абсолютно сухой ткани; W — объемная влажность ткани в %;

а —постоянный коэффициент, равный, приблизительно, для шерстяных тканей 0,0024 и для хлопчатобумажных — 0,0039. Зависимость теплового сопротивления от вида и объемного веса волокнистого материала приведена в табл. 11-16.

Таблица 11-16. Зависимость теплового сопротивления от вида и объемного веса материала

Материалы

Суммарное тепловое сопротивление в м2Ч-град1ккал при объемном весе в г/см3

0,0055

0,011

0,002

0,044

0,066

0,088

0,110

Шерсть

0,4340

0,462

0,636

0,647

0,646

0,618

0,623

Хлопок

0,4590

0,475

0,538

0,546

0,556

0,548

0,467

Хлорин

0,5990

0,603

0,628

0,635

0,614

0,601

0,603

Капрон

0,5000

0,501

0,601

0,617

0,536

0,537

0,536

Натуральный шелк

0,4920

0,466

0,503

0,505

0,493

0,505

0,500

 

 

 

 

 

 

 

 

При оценке теплозащитных свойств одежды ее воздухопроницаемость является одним из решающих факторов. При большой воздухопроницаемости одежда не может быть теплой независимо от ее толщины и веса. В условиях умеренного климата температура окружающего воздуха обычно ниже температуры человеческого тела. Ткань со стороны тела согревается, а с внешней охлаждается. При этом, если ткань имеет незначительную плотность, и особенно, если она выработана из гладких крученых нитей, которые не создают в ткани замкнутые воздушные прослойки, конвекционный поток устремляется наружу и в результате происходит непрерывная смена воздушных прослоек. Теплозащитные свойства таких тканей меньше, чем более плотных и подвергавшихся валке или начесу, и не имеющих открытых пор. Скорость проникания воздуха через материал зависит не только от величины отверстий между нитями, образующими материал, и разности температур его противоположных поверхностей, но и от скорости движения окружающего воздуха. С увеличением скорости воздушного потока тепловое сопротивление тканей резко снижается. При этом интенсивность снижения теплового сопротивления зависит от степени воздухопроницаемости ткани (табл. II-17).

Из таблицы ясно, что в условиях подвижного воздуха тепловое сопротивление более толстого материала при большей воздухопроницаемости меньше по сравнению с более тонким и менее воздухопроницаемым материалом. Известно, что в условиях неподвижного воздуха воздушная прослойка в пределах определенной толщины между телом и материалом увеличивает общее тепловое сопротивление ткани. Однако в условиях подвижного воздуха в результате усиления конвекционного теплообмена под образцом ткани общее тепловое сопротивление снижается и тем больше, чем больше воздухопроницаемость ткани.

 
© 2007 - 2014 Ткани и трикотаж
Рейтинг@Mail.ru Rambler's Top100 Каталог@Mail.ru - каталог ресурсов интернет
Маркетинг и реклама в интернете, создание сайта - 4luxe.ru